Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE
In Computer Science (4CP0)
Paper 02: Application of Computational Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4CPO_02_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

This mark scheme is presented so that questions requiring a handwritten response are grouped at the start.
This is followed by the mark scheme for the questions which require submission of coding.
Examples of coding that would gain marks is grouped at the end in order of coding language.

Question	Answer	Additional Guidance	
1(a)	The only correct answer is C	Mark	
	A is not correct because Boolean only has values True and False B is not correct because it only allows for one character D is not correct because it is used for mixed text and numeric data		
1(b)	(an error that) produces incorrect /unintended output (1)	Accept an example of an explained logic error	(1)
1(d)	Any one from: 1. explain how the program works (1) 2. improve readability of the program (1) 3. make code more understandable (1)	(1)	
1(e)	1. Global variables created in the main program / can be accessed from any part of the program / are in scope throughout the program (1) 2. Local variables are declared/created inside a function/blocked code (indented, brackets) and are only accessible there / are only in scope within the function in which they're declared (1)		(1)

Question	Answer	Additional Guidance	Mark
2(b)(iii)	```Real (1) Because real x integer = real (1)```	Accept double / float Accept 'because it could be a number with decimal places'	(2)
2(b)(iv)	27.375 (1)		(1)
Q2(c)(i)	C\#: 16 or $20(1)$ Java: 16 or $21(1)$ Python: 8 or $10(1)$		(1)
Q2(c)(ii)	C\#: 29 or $31(1)$ Java: 24 or $26(1)$ Python: 14 or $15(1)$		(1)
Q2(c)(iii)	Any of: 1. Message (1) 2. startPos (Python) / pos (Java or C\#) (1) 3. characters (1)		(1)
Q2(c)(iv)	newMessage (1)	Do not accept outMessage	(1)
Q2(c)(v)	Response starts with 'c' (1) Response has six letters in sequence from 'educational' (1)	Marks can be awarded from Q2(c)(vi)	(2)
Q2(c)(vi)	1. Returns substring / crops a string (1) 2. Located between the two input values / with number of characters identified in the last parameter (characters) and starting at the second parameter (startPos) (1)	Award two marks for: It produces a substring of the message starting at position startPos with length characters Award up to 2 marks for a correct interpretation of the code (e.g 'obtain a newMessage' - is worth 1) Accept a correct generic explanation of what a subprogram does for 1 mark	(2)

Question	Answer	Additional Guidance	Mark
Q3(b)	More memory/storage required (1) Because not sorted in place / not efficient / many steps / division of data set / is recursive (1)		

Question	Answer	Additional Guidance	Mark
4(a)	The only correct answer is D A is not correct because Plaintext is the original unencrypted text B is not correct because there is a consistency in the coding of the text C is not correct because a shift encryption replaces letters with other letters a given distance from the original letter (as in a Caesar cipher)		1
4(b)	Award 3 marks for all rows correct Award 2 marks for 4 rows correct Award 1 mark for 2 rows correct		(3)
Q4(c)	One mark for correct decision: Yes (1) Up to two marks for the correct justifications: Each/every letter has a symbol / is represented (1) The symbol is a single/unique representation (1)	Award marks independently	(3)

Question	A
1(c)	C

Answer

1. Semicolon at the end of line 9 [maxValue $=5 ;]$ (1)
2. Consistent capitalisation of 'count' on lines $10,11,13$ and 14 (1)
3. constantValue needs to be defined and given the value $7 /$ replaced by value 7 (1)
Java
4. Semicolon at the end of line 8 [maxValue $=5$;] (1)
5. Consistent capitalisation of 'count' on lines $7,9,11$ and 12 (1)
6. constantValue needs to be defined and given the value $7 /$ replaced by 7 (1)

Python

1. Colon needed at end of line 7 [count, maxValue):] (1)
2. Consistent capitalisation of 'count' on line $3,7,8$ and 9 (1)
3. constantValue needs to be defined and given the value 7 / replaced by 7 (1)

Additional Guidance

Candidates are required to open the file Q01c in

Amended code should be saved as Q01cFINISHED.
Line numbers may have been changed by corrections to code (e.g. insertion of constantValue definition)

Question	Answer		Additional Guidance	Mark
1(f)	Award 1 mark for each correct pair of relational operators and 1 mark for correct Boolean operator for each condition.		Candidates are required to open the file Q01f in the code editor. Amended code should be saved as Q01fFINISHED. Do not penalise candidates who attempt more than the stated requirements. Do not award Boolean operator mark for single \| or \& as these are not correct.	
	Condition	Coding		
	Shop income more than $£ 5000$ or assistant sold at least 10 pairs	shopIncome > 5000; assistantSales >= 10 (1)		
		correct OR operator (1)		
	Shop income at least $£ 2000$ and assistant sold at least 5 pairs	shopIncome >= 2000; assistantSales >= 5 (1)		
		correct AND operator (1)		
	Accept >9, >1999 and >4 for respective >= comparisons			(4)

Question	Answer	Additional Guidance	Mark
2(a)	Award 1 mark for each of: 1. set counter to 1 and guess to 0 (1) 2. set answer to random value between 1 and 10 (1) 3. request input of and accept an integer value for guess (1) 4. create a while loop with a correct condition (1) 5. increment the counter (1) 6. use if else selection to determine and display appropriate output message for incorrect guesses (1) 7. request input of and accept another integer value for a guess inside the loop (1) 8. display correct guess and count of guesses (1) 9. compiling without syntax errors (1) 10. coding meets all requirements of question (1)	Candidates are required to open the file Q02a in the code editor. Amended code should be saved as Q02aFINISHED. Logic of algorithm must be followed as set out. Alternatives must address each point. Do not penalise candidates who attempt more than the stated requirements.	(10)
Question	Answer	Additional Guidance	Mark
Q3(a)	Award 1 mark each for: 1. File opened for input (1) 2. File opened for output (1) 3. Loop for processing data (1) 4. Check for ‘@’ symbol (1) 5. Write invalid address to output file (1) 6. Close files (1)	Amended code should be saved as Q03aFINISHED. Do not penalise candidates who attempt more than the stated requirements.	(6)

Question	Answer	Additional Guidance		Mark
Q3(c)	Award 1 mark for each section of code that: 1. Asks for input of a number and stores it in a variable with a meaningful name (1) 2. Checks number is between 1 and 50 (1) 3. Calculates square and cube of number (1) 4. Displays suitable labels e.g. 'Number’, ‘Square’ and ‘Cube' and relevant values (1) For the whole code: 5. Compiles and runs without logical or syntax errors (1) 6. Efficient in terms of computation, storage and selection of programming constructs (1)	Amended code should be saved as Q03cFINISHED. Allow follow through for mark point 4 when square and cube are incorrectly calculated. Credit alternative coding which produces same results. Accept use of exponent operators: C\# e.g. Math.Pow $(2,3)=8$ Java e.g. Math.pow $(2,3)=8$ Python e.g. 2**3 $=8$.		(6)
Question	Designated marks: Designated marks: 1. Initialise variables for at least two of total number of books, count of pupils and average 2. Initialise variables for gold, silver and bronze / sort array in order of books read 3. Create loop for identifying (and printing) those borrowing fewer than 10 books 4. Print out appropriate details (must include pupil ID) 5. Print out total of books borrowed 6. Print out average number of books borrowed 7. Identification of gold medal winner 8. Identification of silver medal winner 9. Identification of bronze medal winner 10. Details of at least one of gold, silver and bronze medal winner printed (minimum last name or first name) 11. Details of all three medal winners (first name and last name)		Additional Guidance	Mark
Q5			Award marks independently Award marks for reasonable attempt to meet requirement.	(11)

Question 5 Overview marks:				
Mark Band 0	Mark Band 1	Mark Band 2	Mark Band 3	Marks
0	1-3	4-6	7-9	
No rewardable content	Little attempt to decompose the problem into component parts	Some attempt to decompose the problem into component parts	The problem has been decomposed into component parts	
	Some parts of the logic are clear and appropriate to the problem	Most parts of the logic are clear and mostly appropriate to the problem	The logic is clear and appropriate to the problem	
	Some appropriate use and manipulation of data types, variables, data structures and program constructs	The use and manipulation of data types, variables and data structures and program constructs is mostly appropriate	The use and manipulation of data types, variables and data structures and program constructs is appropriate	
	Parts of the code are clear and readable	Code is mostly clear and readable	Code is clear and readable	
	Finished program will not be flexible enough with other data sets or input	Finished program will function with some but not all other data sets or input	Finished program could be used with other data sets or input	
	The program meets some of the given requirements	The program meets most of the given requirements	The program fully meets the given requirements	(9)

C\# Example code

1(c)	8 \square 9 \square 10 11 12 13 \square 14 15 16 - 17 18 -	```{ int maxValue = 5; int constantValue = 7; int count = 0; while (count < maxValue) { Console.WriteLine(count + " " + count + constantValue); count = count + 1; } Console.ReadLine(); }```	
1(f)	19 20 白 21 - 22 - 23 24 25 百 26 27 -	```if (shopIncome > 5000 \|	assistantSales >= 10) { Console.WriteLine("Assistant bonus = " + assistantSalary * 0.1); } else if (shopIncome >=2000 && assistantSales >= 5) { Console.WriteLine("Assistant bonus = " + assistantSalary * 0.05); }```

```
using System;
namespace Q02a
日{
    class Q02a
    {
        static void Main(string[] args)
        |
        // Initialise variables
        int counter = 1;
        Random random = new Random()
        int answer = random.Next(10);
        int guess = 0;
        // Print prompt and take guess from user
        Console.WriteLine("Enter a number from 1 to 10: ")
        guess = Convert.ToInt32(Console.ReadLine());
        // Create WHILE loop to check if guess is correct
            while (guess != answer)
            {
                counter++;
                if (guess > answer)
                    Console.WriteLine(guess + " was too high. Try again.");
            else
                    Console.WriteLine(guess + " was too low. Try again.");
            Console.WriteLine("Guess again: ");
            guess = Convert.ToInt32(Console.ReadLine());
        }
            // Report the correct answer to the user and indicate the number of guesses
        Console.WriteLine("You guessed" + guess + " in " + counter + " guesses");
        Console.ReadLine();
    }
```

3(a)

```
using System;
namespace Q03a
日{
    class Q03a
    {
        static void Main(string[] args)
        {
// Open the input file
            System.IO.StreamReader fileReader = new System.IO.StreamReader("Email.txt");
// Open output file
            System.IO.StreamWriter fileWriter = new System.IO.StreamWriter("Error.txt");
// Find errors and write to output file
        while (fileReader.Peek() >= 0)
        {
            String email = fileReader.ReadLine();
            if (!email.Contains("@"))
            {
                    fileWriter.WriteLine(email);
            }
        }
// Close files
            fileWriter.Close();
            fileReader.Close();
            Console.Read();
        }
    }
```


Note: Line 19 is an alternative response to line 18

```
using System;
namespace Q03C
class Q03c
i
    static void Main(string[] args)
        // Enter your code here
            while (myValue >= 1 && myValue <= 50)
            \ (mile (myvalue >= 1 && myvalue <= 50)
                    myValue = Convert.ToInt32(Console.ReadLine())
                    if (myValue >= 1 && myValue <= 50)
                    Console.WriteLine("Value " + myValue + " Square " + myValue * myValue + " Cube " + myValue * myValue * myValue).
                Console.WriteLine("Value " + myValue + " Square " + Math.Pow(myValue, 2) + " Cube " + Math.Pow(myValue, 3));
            }
Console.ReadLine();
} }
```

double average $=0$;
int[] books $=$ new int[libraryRecord.GetLength(0)];
int gold $=0$, silver $=0$, bronze $=0$;
int goldid $=0$, silverID $=0$, bronzeID $=0$;
Console.WriteLine ("Pupil ID of pupils who have read less than 10 books") ;
for (int $i=0 ; i<l i b r a r y R e c o r d . G e t L e n g t h(0) ; i++)$
books[i] $=$ Convert.ToInt16(libraryRecord[i, 31);
if (books[i] > gold)
(bronze = silver; silver = gold; gold = books[i]; goldid = i;
else if (books[i] > silver)
$i^{\text {else }}$
bronze $=$ silver; silver $=$ books[i]; silverID $=i ;$
else if (books[i] > bronze)
bronze $=$ books[i] ; bronzeID $=i$;
total $=$ total + books[i] ;
if (books[i] < 10)
1 Console.WriteLine (libraryRecord [i, 0]) ;
1
Console.WriteLine () ;
Console.WriteLine ("Total books read by pupils $=$ " + total);
Console.WriteLine () ;
average $=$ total / libraryRecord. GetLength ($)$;
Console.WriteLine ("Average books read by pupils $=$ " + average); Console.WriteLine() ;

Console.WriteLine ("Gold winner is " + libraryRecord[goldID, 1] +" " + libraryRecord[goldID, 2]);
Console.WriteLine("Silver winner is " + libraryRecord[silverID, 1$]+n++$ libraryRecord[síverID, 2]); Console.WriteLine ("Bronze winner is " + libraryRecord[bronzeID, 1] $+n++$ libraryRecord[bronzeID, 2]); Console.ReadLine() ;

Java Example code

2(a)

```
package Q02a
    import java.util.Random;
    import java.util.Scanner;
```

 public class Q02a
 日 1
public static void main(String[] args)
\{
// Initialise variables
int counter = 1 ;
int answer $=$ new $\operatorname{Random}() \quad$ nextInt (10) +1 ;
int guess $=0$;
// Print prompt and take guess from user
Scanner input = new Scanner(System.in);
System.out.print("Enter a number from 1 to 10: ");
guess $=$ input.nextInt();
// Create WHILE loop to check if guess is correct
while (guess != answer)
\{
counter++;
if (guess > answer)
System.out.println(guess + " was too high. Try again.");
else
System.out.println(guess + " was too low. Try again. ");
System.out.print ("Guess again: ");
guess $=$ input.nextInt();
$\}$
// Report the correct answer to the user and indicate the number of guesses
System.out.println("You guessed" + guess + " in " + counter + " guesses");

```
package q03aFINISHED;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader
import java.io.PrintWriter.
import java.io.UnsupportedEncodingException,
import java.util.Scanner;
qu
    public static void main(String[] args) throws FileNotFoundException,UnsupportedEncodingException
    {
        String email="";
        PrintWriter errorFile,
    // Open the input file
    Scanner emailFile = new Scanner(new BufferedReader(new FileReader("Email.txt")));
    // Open the output file
    errorFile = new PrintWriter("Error.txt", "UTF-8");
    // Find errors and write to output file
    while (emailFile.hasNextLine())
    i
        email = emailFile.nextLine();
        if (!email.contains("@"))
        if
            errorFile.println(email);
        }
        }
        // Close files
        emailFile.close();
        errorFile.close();
    }
    }
```

Note: Line 19 is an alternative response to line 18

```
package q03cFINISHED;
import java.util.Scanner;
public class Q03c
日{
    public static void main(String[] args)
    1
        // Write your code here
        Scanner input = new Scanner(System.in);
        int myValue = 
        while (myValue >= 1&& myValue <= 50)
    i
        System.out.println("Enter a value from 1 to 50: ")
        myValue = input.nextInt();
        if (myValue >= 1 && myValue <= 50)
        if
            System.out.println("Value " + myValue + " Square " + myValue * myValue + " Cube " + myValue * myValue * myValue)
            System.out.println("Value " + myValue + " Square " + Math.pow(myValue, 2) + " Cube " + Math.pow(myValue, 3));
        } }
```


Python Example code

1(c)	```# QOlc count = 0 maxValue = 5 constantValue = 7 while (count < maxValue): print(count, count + constantValue) count = count + 1```
1(f)	

2(a)

```
# Initialise variables
counter = 1
answer = randint(1,10)
guess = 0
# Print prompt and take guess from user
guess = int(input("Enter a number from 1 to 10: "))
# Create while loop to check answer
while guess!=answer:
    counter = counter + 1
    if(guess > answer):
    print (guess, " was too high. Try again.")
    else:
    print (guess, " was too low. Try again.")
    guess = int(input("Guess again: "))
```

\# Report the correct answer to the user and indicate the number of guesses
print ("You guessed", guess, "in", counter, "guesses")

3(a)	```Q03aFINISHED # Open file and input data with open('Email.txt','r') as inputFile: emailList = inputFile.readlines() # Open file for output outputFile = open('Error.txt', 'a') # Find errors and write to error log for address in emailList: if not "@" in address: outputFile.write (address) # Close files outputFile.close() inputFile.close()```

```
3(c)
```

```
# Q03c
```


Q03c

Write your code below this line

Write your code below this line

myValue = 1
myValue = 1
while (myValue >= 1 and myValue <= 50)
while (myValue >= 1 and myValue <= 50)
myValue = int(input("Enter a value from 1 to 50: "))
myValue = int(input("Enter a value from 1 to 50: "))
if (myValue >= 1 and myValue <= 50):
if (myValue >= 1 and myValue <= 50):
print("Value: ", myValue, "Square: ",myValue*myValue, "Cube: ", myValue*myValue*
print("Value: ", myValue, "Square: ",myValue*myValue, "Cube: ", myValue*myValue*
myValue)
myValue)
print("Value: ", myValue, "Square: ", myValue**2, "Cube: ", myValue**3)

```
    print("Value: ", myValue, "Square: ", myValue**2, "Cube: ", myValue**3)
```

Note: Line 11 is an alternative response to line 9.

```
5
```

```
# Write your code below this line
```


Write your code below this line

total = 0
total = 0
gold = 0
gold = 0
ilver = 0
ilver = 0
bronze = 0
bronze = 0
goldID = 0
goldID = 0
silverID =
silverID =
silverID = 0
silverID = 0
bronzeID = 0
bronzeID = 0
print ("Pupil ID of pupils who have read less than 10 books ")
print ("Pupil ID of pupils who have read less than 10 books ")
for row in range(len(libraryRecord)):
for row in range(len(libraryRecord)):
books = int(libraryRecord[row] [3])
books = int(libraryRecord[row] [3])
if (books > gold):
if (books > gold):
bronze = silver
bronze = silver
silver = gold
silver = gold
gold = books
gold = books
gold = books
gold = books
elif (books > silver):
elif (books > silver):
bronze = silver
bronze = silver
silver = books
silver = books
silverID = row
silverID = row
elif (books > bronze)
elif (books > bronze)
bronze = books
bronze = books
bronzeID = row
bronzeID = row
total = total + books
total = total + books
if (books < 10):
if (books < 10):
print ("\t",libraryRecord[row][0])
print ("\t",libraryRecord[row][0])
print ("\n")
print ("\n")
print ("Total number of books read by pupils: " , total)
print ("Total number of books read by pupils: " , total)
print ("\n")
print ("\n")
print ("Average number of books read by pupils: " , total / len(libraryRecord[0]))
print ("Average number of books read by pupils: " , total / len(libraryRecord[0]))
print ("\n")
print ("\n")
print ("Gold medal winner is: \t\t", libraryRecord[goldID][1], " ", libraryRecord[goldID][2])
print ("Gold medal winner is: \t\t", libraryRecord[goldID][1], " ", libraryRecord[goldID][2])
print ("Silver medal winner is: \t", libraryRecord[silverID][1], " ", libraryRecord[silverID][2])
print ("Silver medal winner is: \t", libraryRecord[silverID][1], " ", libraryRecord[silverID][2])
print ("Bronze medal winner is: \t", libraryRecord[bronzeID][1], " ", libraryRecord[bronzeID][2])

```
print ("Bronze medal winner is: \t", libraryRecord[bronzeID][1], " ", libraryRecord[bronzeID][2])
```

